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1 Introduction

This paper studies the design of very large scale integrated circuits. While

many problems in this �eld are NP-complete, some of them can be handled by

combinatorial algorithms. One of the main areas of very large scale integrated

routing is called detailed routing. As for this type of routing, the devices of

an electric equipment are placed on the four boundaries of a rectangular

board. The aim is to connect certain given subsets of devices by wires. To

do this we are allowed to use a rectangular grid that contains layers parallel

with the rectangular board which contains the terminals on its boundary. In

former times technology allowed only a very limited number of layers to use,

that is why detailed routing was considered a planar, 2-dimensional problem.

Recently, thanks to the technological developments we are permitted to use

more and more layers. This paper studies the single active layer routing prob-

lem. The problem itself is 3-dimensional, the devices of an electric equipment

are placed on a rectangular circuit board. Again, we are supposed to connect

certain given subsets of the devices by wires and this routing is to be realized

in a 3-dimensional cubic grid above the layer that contains the devices. In

other words, we have to �nd vertex disjoint trees with given vertex sets in a

3-dimensional rectangular grid. Clearly, the number of required layers, that

is the height of the routing should be optimized. Because of the di�culty

of the problem, most of the routing algorithms are approximate and they

will not necessarily �nd the best solutions. As we will see, the problem is

not always solvable even with an arbitrary height, moreover even for small

instances (e.g. when the circuit board is 2x2) there does not exist a su�cient

routing. Consequently, we introduce extra rows and columns to guarantee

solvability.
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Firstly, we review the main results of the single active layer routing problem

(SALRP for short) in the case where both sides of the rectangular board may

be extended. In the next section we will study why and when it is necessary

to introduce extra rows and columns, and we will prove a result which gives a

necessary and su�cient condition for the solvability of the single active layer

routing problem without spacing, which seems to be folklore, and we will

give an algorithm that realizes the routing itself. Finally, we will consider the

case in which the terminals are placed on two layers, so called 3-dimensional

channel routing.
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2 Basic de�nitions

De�nition 2.1 The vertices of a given planar grid of size w × n (which

consists of w rows and n columns) are called terminals. A net S is a set of

terminals. A single active layer routing problem is a set S = {S1, S2, ..., Sk}

of pairwise disjoint nets.

De�nition 2.2 By a spacing of sn in direction n we are going to mean that

we introduce sn − 1 pieces of extra columns between every two consecutive

columns (and also on the right hand side of the rightmost column) of the

original grid. This way the width of the grid is extended to n′ = snn. A

spacing of sw in direction n is de�ned analogously.

De�nition 2.3 A solution (or routing) with a given sw and sn of a single

active layer routing problem S = {S1, S2, ..., Sk} is a set H = {H1, H2, ..., Hk}

of pairwise vertex disjoint, connected subgraphs in the cubic grid of size

(w · sw)× (n · sn)×h, such that Si ⊂ V (Hi), that is, Hi connects the vertices

of Si. The Hi are called wires. h is called the height of the routing, and the

grids of size (w · sw) × (n · sn) are called layers. If sw = sn = 1 then the

problem is solvable without spacing.
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3 Single Active Layer Routing Problem With

Spacing

In this section we study the case where we introduce new rows and columns

in order to guarantee solvability. However, in this case it is easy to �nd a

routing, the main problem is to �nd a routing with height as minimal as

possible.

Proposition 3.1 [2]

For any given n and sw there exists a routing problem which cannot be

solved with height smaller than n
2sw

.

Proof:

Figure 1

Let w = 2a, n = 2b and w′ = sww. Consider the following placement of

the terminals. Each net consists of only two terminals and they are placed

on the circuit board in a symmetrical position. See Figure 1

The number of nets is an. Line e cuts every net into two, so that for any

routing with height h must satisfy w′h ≥ an which implies h ≥ n
2sw

. �

Proposition 3.2 [2]

If sw ≥ 2 and sn ≥ 2 than every routing problem can be solved with height

h ≤ nw
2
.

Proof: Since 1-terminal nets can be disregarded, the number of nets is at

most nw
2
. We assign a separate layer to each net. With a long h-wire segment

we connect each terminal with its layer, then on the layer assigned to the net
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we introduce a 1-unit w-wire and then a 1-unit n-wire segment. After that,

we interconnect the terminals by using only columns and rows that did not

belong to the original grid, this guarantees that the long h-wire segments do

not intersect the wires on the layers. Hence, the routing is done by using not

more than nw
2

layers. See Figure 2. �

Note that if we �x w then if sw ≥ 2 and sn ≥ 2 then the routing can be

realized with height h = O(n), but it is not so obvious if sn = 1 and w is

also �xed.

Figure 2
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The main results of this area are the following theorems:

Theorem 3.1 [2]

If each net consists of two terminals only then a single active layer routing

problem can be solved with sw = sn = 2 and with height h = 3 max{n, w}.

The problem is also solved if we have multiterminal nets, that is each net

contains an arbitrary number of terminals:

Theorem 3.2 [2]

Any single active layer routing problem can be solved with sw = sn = 2

and with height h = 6 max{n, w}.

We note here that each theorem mentioned in this section gives a poly-

nomial algorithm for the routing.
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4 Single Active Layer Routing Problem With-

out Spacing

As we have already seen in the previous chapter if we are allowed to extend

the width w and the length n then the problem always becomes solvable.

In this section we consider the case in which we cannot use extra rows and

columns, so that we shall realize the routing above the original grid of size

w × n. Let us consider the following single active layer routing problems:

Figure 3

One can easily see that there is no su�cient routing. First of all, we give

a necessary and su�cient condition for the solvability of the single active

layer problem without spacing, which seems to be folklore. If the problem is

solvable we give an algorithm which gives a routing with height h = O(n2)

where n ≥ w, which is the main result of this paper.

We will call empty terminals the terminals which do not belong to any

net.

We will use the term w-wire segment to refer to a wire segment that is

parallel to the width of the grid, and also use n-wire segment and h-wire

segment analogously.

Theorem 4.1 A single active layer routing problem is solvable without spac-

ing if and only if there exists at least one empty terminal or there are at least
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two neighbored terminals which belong to the same net, and in this case the

routing can be realized with height h = O(n2) where n ≥ w.

Proof: Firstly, let us suppose that there is no empty terminal and neither

of the neighbored terminals belong to the same net. Therefore, there is an

h-wire segment from each terminal, and there is a minimal among them, say

belonging to terminal t1. From the endpoint of this h-wire segment there is

an n- or w-wire segment, hence this intersects another wire, but this cannot

belong to the net of t1 because t1 has no neighbor from its net. Thus, the

routing cannot be realized. See Figure 4.

Figure 4

Notice that if there is a wire starting from a terminal, we can say that

the terminal is moved to the endpoint of the wire, because if we connect

this endpoint with a terminal which belongs to the same net at the same

time we connect it with the terminal itself. Now, let us suppose that there

are two neighbored terminals. In this case we may connect them on the �rst

layer, and we introduce a wire segment of height 2 from each terminal, so we

can consider the second layer as the active layer of a new single active layer

routing problem, and we have an empty terminal.

Thus, we have a single active layer routing problem with an empty terminal.

We can move this empty terminal, as you can see in Figure 5.

We introduce a new move called rotation, which is represented in Figure 6

and in Figure 7.
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Figure 5

Figure 6

So, by using an empty terminal we can push a non-empty terminal in a 2x3

rectangle. The height increases by 5 during the rotation.

Figure 7

We will move one of the neighbors of the empty terminal next to an other

one which belongs to the same net, the process can be seen in Figure 8. We

push the terminal by using the move rotation, and if we have to turn left or

right we simply move the empty terminal to the appropriate place.

Note that the height will increase by O(n), because we will have at most 2n

rotations and each of them increases the height by 5. Then these two termi-

nals are neighbored so we can connect them while the height of the problem

is increased by 2. Hence, by increasing the height by O(n) we can make a

new empty terminal. After that we do exactly the same 2n times and get 2n

empty terminals with height O(n2). We would like to note here that by using

only rotations and moving empty terminals we can make n2 empty terminals

which means a complete routing. It follows that, the problem is solvable with
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Figure 8

height O(n3), but now we are going to prove that height h = O(n2) can be

achieved.

After that, we move n empty terminals into the �rst row and n ones in

the third row. In the next phase we will wire the nets which have a terminal

in the second row in the �rst, third, �fth etc. column; call these terminals

red terminals and the corresponding nets red nets. This time we only deal

with the red nets, we do not want to interconnect the others. At �rst we

consider the fourth row: if in this row there are some terminals which belong

to a red net we can connect them by using the third row which is empty,

and we increase the height by only one per connected terminal. If we have

connected all terminals we could this way we introduce h-wire segments from

every terminal so that the endpoints of the wires are on the same layer.

After that, we make a rotation in the �rst and in the second columns and

in the third and in the fourth column and so on as it can be seen in Figure

9. Black represent the empty terminals, and terminals 2,3,4,5 are the ones

that may move during this step, where there is no symbol we can have an

arbitrary terminal.

Figure 9
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This way we moved the empty rows downwards by 1 and what is really im-

portant is that the red terminals are still between the two empty rows like

they were. Next, we check again the row which is above the lower empty one.

If there is a terminal which belongs to a red net we connect them by using

the fourth row which is now empty, etc.

We repeat this step n-times and we interconnect the red nets and note that

this means at least n/2 nets, say that this means k1 connected terminals, be-

cause the red nets will surely be connected and so will be the red terminals.

Hence, the height has been increased by O(n) + k1.

Now the empty rows are the nth and the (n− 2)th ones. Let us consider the

�rst, the third, the �fth terminals of the (n − 1)th row. If some of them are

empty we can move a non-empty one there by increasing the height by one.

Finally, we note that we have wired at least n/2 nets and the situation is the

same as it was before: we can now introduce new red terminals and iterate

this procedure described above.

If we iterate this procedure n times, all of the nets will be interconnected and

we get that the height of the routing is O(n2) +
∑

ki = O(n2), since
∑

ki is

the number of the terminals. �
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5 3-Dimensional Channel Routing

After having solved the single active layer routing problem we may ask the

question what if the terminals are not on a single layer. In this chapter we

will study the case where the terminals are placed on the bottom and on the

top layer. The object of the problem is the same as it was in the single active

layer routing problem: to connect the terminals in each net with Steiner-trees

in the 3-dimensional cubic grid by using as few layers as possible in such a

way that Steiner-trees which interconnect distinct nets are vertex-disjoint.

If we are allowed to introduce extra rows and columns (in both grid),

then the problem is always solvable, moreover:

Theorem 5.1 [4]

Every 3-dimensional channel routing problem can be solved with sw =

sn = 2 and height h = 15 max{n,w}.

From now on we will consider the 3-dimensional channel routing problem

without spacing.

Hereafter, we will disregard the case where each net consists of only two

terminals which are opposite because in this particular case we can trivially

solve the problem by introducing long h-wire segments from each terminal.

Note that if the 3-dimensional channel routing is solvable then if we con-

sider the bottom (or the top layer) as the active layer of a single active layer

routing problem then this is also solvable.

Now we prove the other new result of this paper.

Theorem 5.2 If the bottom layer contains at least two empty terminals and

the top layer contains an empty terminal or two neighbored terminals of the

same net then the 3-dimensional channel routing problem is solvable with

height h = O(n3) where n ≥ w.
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To prove this proposition �rst we de�ne (w×n−2) puzzles. This is closely

related to the single active layer routing and the channel routing as well.

The (w × n − 2)-puzzle is a generalization of Sam Loyd's well-known 15-

puzzle. Sam Loyd's puzzle is the following: we panel a square board into

4× 4 squares and we put on the board 15 numbered tiles, see Figure 10

Figure 10

Our aim is to reverse the 14th and 15th tile by using the following move:

we can exchange the nonblank tile with its neighbored blank tile. However,

in the w × n− 2 puzzle we have a w × n table with two blank tiles and the

allowed moves are exactly the same.

This w×n-puzzle is naturally associated with a single active layer routing

or a 3-dimensional channel routing problem as follows. If we look at the cubic

grid from above, on the top layer we can see the placement of the terminals.

If we only move the empty terminal several times and after every move we

look at the cubic grid from above, we remark that this is like a w×n-puzzle.

This association can be seen in Figure 11

Figure 11

Now let us consider a 3-dimensional channel routing problem with the

condition written in the theorem. Firstly, consider the problem as two single

active layer routing problems. Since the solvability is guaranteed we can solve

each of them with height h = O(n2) (Note that it is possible that each net

has exactly one terminal on the bottom layer and exactly one terminal on the
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top layer, in this case we have not introduced any wires). Hence, we have two

layers and none of them contains more then one terminal which corresponds

to the same net. Furthermore, on the lower one there are at least two empty

terminals and on the upper one there is at least one empty terminal.

Now we want to get terminals that belong to the same net in the same

row and column so that we would connect them with a single long h-wire

segment.

Consider the placement of the terminals as two w × n-puzzles. We want

to see the very same con�guration on them.

Let C1 and C2 be arbitrary con�gurations. Let π be a permutation on the

nonblank tiles such that π(t1) = t2 if and only if the location of a nonblank

tile t1 is the same as the location of a nonblank tile t2 in C2. Wilson showed

[3] that C1 is reachable from C2 if and only if π is an even permutation (that

is, the number of inversions is even).

Furthermore, Parberry showed [5] that we can reach the con�guration

with O(n3) moves, which means h = O(n3).

Since by increasing the height with O(n) we can move an empty terminal

next to the other one, we can have two blank tiles in a 2× 2 square. In this

square we can change the inversion number by one. Thus in this case π can

be even so we can reach the same con�guration on the two layers, so that

with a long h-wire segment we can interconnect the terminals, and we have

used O(n3) layers, which ends our proof. �

Note that our proof implies that the 3-dimensional channel routing is not

solvable if and only if we have at most one empty terminal on the bottom

and at most one empty terminal on the top layer and permutation π (which

is de�ned as above) is odd.
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We note here that the routing cannot be realized with height h = O(n2).

Let us consider the following channel routing problem: the bottom and the

top layer is n × n. On the bottom layer the terminals 1, 2...n2 − 2 are one

after the other, from left to right and from up to down, and if we rotate this

layer about its center with π/2 we get the placement of the terminals on the

top layer. In this case we have O(n2) terminals and the distance between two

terminals that belong to the same net is O(n), thus we need at least O(n3)

layers.
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6 Summary

As we have seen in this paper some 3-dimensional VLSI routing problems

can be handled by combinatorial algorithms. If we are allowed to extend the

length and the width of the problem, there always exists a routing. The main

problem is to use as few layers as possible. In the area that I have studied

we do not use any spacing so the problem is not always solvable. I gave

a necessary and su�cient condition for the solvability of the single active

layer routing without spacing, and an algorithm that realizes the routing

with height h = O(n2). We have seen the connection between 3-dimensional

channel routing and puzzles, and I proved that in certain cases the routing

can be realized with height h = O(n3).
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